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Analysis Framework for Performance Evaluation of Reliability
Management in Power Systems with Increased Uncertainty

E. Heylen ∗, G. Deconinck & D. Van Hertem
Div. ELECTA, Dept. Electrical Engineering, KU Leuven & EnergyVille, Leuven, Belgium

ABSTRACT: Power system reliability is managed according to a reliability criterion, which determines the
acceptable reliability level in the system. However, due to increasing uncertainties in power systems, the cur-
rently used deterministic N-1 reliability criterion is challenged and alternative probabilistic reliability criteria
are sought for. These alternatives take uncertainty into account in a more convenient way, thereby outperform-
ing deterministic approaches. Evaluating and quantifying performance of new power system reliability criteria
and comparing these to the state-of-the-art approach are crucial to give incentives to stakeholders to change
the manner in which they do their reliability management. Any alternative must be proven to be cost-effective
over the entire operating range. In this paper, an analysis framework is specified that allows the development
of techniques for performance evaluation of reliability management according to various power system relia-
bility criteria. A hybrid technique for evaluating performance of short term reliability management, combining
aspects of simulation techniques and analytical contingency enumeration, is presented and compared with an
analytical state enumeration approach in a quantitative and qualitative way. Both techniques are applied to a 5
node test system for three uncertainty levels leading to similar results in terms of expected total system cost.

1 INTRODUCTION
Economics, social well-being of a modern society
and the quality of life are strongly influenced by re-
liability of electricity supply. An adequate reliabil-
ity level, which balances the value of reliability and
its cost, is required in one of the most critical in-
frastructures of modern society. Moreover, the power
system is complex and continuously evolving, while
the currently used reliability management based on
the deterministic N-1 reliability criterion was devel-
oped with a centrally planned and operated nature of
generation, transmission and distribution in mind (Al-
lan & Billinton 2000). The deterministic N-1 crite-
rion is challenged by the increasing penetration of re-
newable energy sources in the system, which has led
to higher uncertainties and less cost-effective system
operation, as larger reliability margins are required.
Furthermore, a N-1 criterion only considers a lim-
ited set of contingencies, i.e. unexpected outage or
failure of a system component such as a line, gen-
erator or transformer, and deems other contingencies
as not probable. Nevertheless, reports show that ma-
jor disturbances occur due to combinations of fail-
ures not dealt with in the currently used determin-
istic approach based on a N-1 criterion (Phadke &
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Thorp 1996, Tamronglak, Horowitz, Phadke, & Thorp
1995). Consequently, the implementation of alterna-
tive probabilistic reliability criteria needs to be con-
sidered (CIGRE Working Group C4.601 2010). Al-
ternative probabilistic approaches able to overcome
challenges and shortcomings of deterministic reliabil-
ity criteria are under development1. In order to give
incentives to each stakeholder in the power system to
change their manner of reliability management, it is
important to quantify benefits of using alternative re-
liability criteria.

Techniques for evaluating and quantifying perfor-
mance of power system reliability management ac-
cording to various reliability criteria are not exten-
sively covered in literature. Within the framework of
the GARPUR project1, a quantification platform is
developed that allows to simulate TSOs’ short term
reliability management according to various reliabil-
ity criteria, evaluate the final system state and reli-
ability decision related trajectory and compare the
performance of various reliability criteria (Heylen,
Labeeuw, Deconinck, & Van Hertem 2016). In order
to make an honest comparison, an appropriate perfor-
mance evaluation technique is important. Similarities
can be found between probabilistic reliability or se-
curity assessment methods (Warwick 1997, Allan &
Billinton 2000, Meliopoulos 2005) and performance
evaluation techniques, but there are some important

1www.garpur-project.eu
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differences between them.
In this paper, an analysis framework is specified

that allows the development of techniques for perfor-
mance evaluation of reliability management accord-
ing to various power system reliability criteria. A hy-
brid technique for evaluating performance of short
term reliability management, following this analysis
framework, is presented. This technique combines as-
pects of simulation techniques and analytical con-
tingency enumeration. The hybrid technique is com-
pared with an alternative analytical state enumeration
approach in a qualitative and quantitative way. This
comparison highlights important aspects to consider
in order to evolve towards an optimal balance be-
tween accuracy and computational complexity of per-
formance evaluation techniques.

Section 2 defines the analysis framework. The hy-
brid technique following the analysis framework is
presented in section 3, as well as the analytical ap-
proach used for comparison. Both techniques are ap-
plied to a 5 node test system that is managed accord-
ing to two different reliability criteria. The case study
and the comparison of techniques are included in sec-
tion 4. Section 5 concludes the paper.

2 PERFORMANCE EVALUATION OF POWER
SYSTEM RELIABILITY MANAGEMENT

In order to assess performance of power system relia-
bility management according to a particular reliability
criterion, different aspects need to be considered. The
analysis framework consists of:

• Definition of performance of reliability manage-
ment and which aspects to include

• Definition of system boundaries to limit the ex-
tent of the analysis

• Selection of the level of modelling detail and
analysis method

• Selection of performance indicators

Those aspects are handled more in detail in following
subsections.

2.1 Performance of reliability management
The ideal reliability criterion according to which reli-
ability can be managed is the one maximizing socio-
economic surplus2. It results in an optimal balance be-
tween reliability cost and socio-economic criticality
as indicated by the dashed line in figure 1. However,
using such a criterion in practice for decision making
is not possible due to data limitations. Alternatively
to deterministic reliability criteria used so far, limits

2Socio-economic surplus is the sum of surplus or utility of
all stakeholders, including external costs and benefits (e.g. envi-
ronmental costs) over the expected operating range (GARPUR
consortium 2016)

on quantitative reliability indices might be used that
approximate reliability management according to the
maximal socio-economic surplus criterion.

An ex-post evaluation is required to assess per-
formance of power system reliability criteria. Perfor-
mance of power system reliability management ac-
cording to various reliability criteria needs to be com-
parable for various types of reliability criteria, e.g. de-
terministic or probabilistic in nature, defined in terms
of different (types of) acceptability constraints, etc. A
unified performance evaluation of power system reli-
ability management consists of evaluating utility cost
versus socio-economic criticality. Criticality refers to
the extent of consequences for users of an infrastruc-
ture when a system does not carry out its intended
function (Kjølle, Gjerde, & Hofmann 2013). Criti-
cality describes how severe the consequences are for
users who are dependent on the system. Consumer in-
terruption costs (Allan & Billinton 2000) and envi-
ronmental costs are examples of socio-economic crit-
icality. Utility cost is the cost for achieving a particu-
lar reliability level. The principle of utility cost versus
socio-economic criticality is graphically illustrated in
figure 1. Benchmarking results of alternative reliabil-
ity management strategies with the currently used N-1
approach is a good practice to evaluate how alterna-
tive reliability management strategies perform com-
pared to the state-of-the-art approach.

Total cost

Utility cost
Socio-
economic
criticality

Reliability

C
os

t

Figure 1: Utility cost versus socio-economic criticality

2.2 System boundaries
The system in performance evaluation of reliabil-
ity management is defined by three main attributes3

(GARPUR consortium 2016): (1) the stakeholders in-
cluded in the evaluation, i.e. TSO, consumers, gener-
ators, etc., (2) the area and (3) the time over which the
performance evaluation is made. The time horizon of
the reliability management strategy under evaluation
is also an important aspect to define. The three main
time horizons corresponding to different TSO deci-
sion making processes are long term, i.e. system de-
velopment, mid term, i.e. asset management and short

3A partial equilibrium approach is used which implies that
changes in the electricity market do not have a significant effect
on other markets (GARPUR consortium 2016)
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term, i.e. operational planning and real time opera-
tion. The decision making processes are interlinked.

2.3 Analysis methods and level of modelling detail
Performance evaluation of power system reliability
criteria consists of three main tasks:

1. Generation of sample set of states characterized
by forecasts of power generation (incl. Renew-
able Energy Sources (RES)) and load, real time
realization of RES power generation and load
and contingencies.

2. Simulation of reliability management according
to a particular reliability criterion for the states
in the sample set.

3. Post-processing of simulation results according
to the type of sample set.

Similarities can be found between reliability as-
sessment techniques and performance evaluation
techniques for power system reliability management.
Performance of reliability management is related to
the resulting reliability level in the system. Reliability
assessment techniques evaluate whether the system is
reliable in a particular system state and therefore ver-
ify whether the specified reliability criterion is sat-
isfied or not. Reliability assessment of the currently
used deterministic N-1 reliability criterion only fo-
cuses on up to N-1 contingency states and omit higher
order contingency cases. Stochastic behaviour of load
and RES is also not considered in those approaches.
Performance evaluation techniques on the other hand
should in theory assess all possible system states in
terms of contingencies and load and RES realizations
in order to make an overall evaluation of performance,
similar to probabilistic reliability assessment. This is
not doable in practice, especially not in large power
systems. Appropriate systems states to evaluate need
to be selected without favouring a particular reliability
criterion. Contingency cases can be selected based on
probability of occurrence or the risk they are subject
to (Singh & Mitra 1997, Khan & Billinton 1992, Ste-
fopoulos, Yang, Cokkinides, & Meliopoulos 2005).
Uncertainty in load and RES can be represented by a
multi-dimensional uncertainty cloud, which includes
(cross-) correlations. In order to make an honest com-
parison of performance of various reliability criteria,
it is important that values of exogenous variables are
the same for all reliability criteria under evaluation
and that the same performance indicators are used,
which hold for both deterministic and probabilistic
reliability criteria. An important difference with re-
liability assessment methods is that reliability assess-
ment mainly focuses on the evaluation of the final sys-
tem states, while performance evaluation requires that
also the reliability decision related trajectory is eval-
uated. This is crucial as different reliability criteria
imply different decisions for equal system conditions

(Heylen, Labeeuw, Deconinck, & Van Hertem 2016),
as they consider uncertainty in different ways.

Two fundamentally different methods for perfor-
mance evaluation of power system reliability manage-
ment exist similarly to reliability assessment: simu-
lation and analytical techniques. Sample generation
and processing of simulation results differ for differ-
ent methods. Simulation techniques, often referred to
as Monte Carlo simulation, simulate the actual pro-
cess and random behaviour of the system. States are
randomly selected based on their probability result-
ing in high probability states that are simulated more
likely and possibly several times. Analytical methods,
such as analytical state enumeration, determine per-
formance indicators based on a mathematical model.
States are selected based on probability and/or con-
tingency order and are evaluated only once. While
simulation techniques allow to determine probability
distributions of performance indicators, analytical ap-
proaches mainly focus on expected values (Allan &
Billinton 2000). Hybrid techniques combine aspects
of both methods. The required type of information is
important to consider in the development or selection
of a performance evaluation technique.

The optimal level of modelling detail, balancing ac-
curacy and computational complexity, depends on the
considered time horizon of reliability management
and is subject to further study. The level of modelling
detail determines the required type of samples, e.g. se-
quential versus non-sequential samples, and the simu-
lation approach, e.g. should an AC or DC power flow
be used for the simulation of TSO’s reliability man-
agement.

2.4 Performance indicators
The ideal socio-economic performance indicator of
power system reliability management is total socio-
economic surplus, because it covers overall costs and
benefits of different system stakeholders. Data to cal-
culate socio-economic surplus are not always avail-
able. The sum of reliability and interruption costs is
a good approximation for socio-economic surplus un-
der two simplifying assumptions4 (GARPUR consor-
tium 2016):

• Changes in the electricity market should not
change the behaviour of electricity market actors
such as producers and consumers

• Changes in the electricity market should have lit-
tle effect on other markets.

Reliability cost comprises fixed and variable pro-
ducer and TSO costs (GARPUR consortium 2016).
Interruption costs are calculated based on the amount

4These two assumptions are never fully met. If, for example,
electricity becomes more expensive and consumers’ price elas-
ticity is less than one, consumers will buy less electricity and
will have less budget left to buy other goods.
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of load curtailed at a particular load point and value
of lost load (VoLL) of interrupted customers, which
amongst others depends on the time, duration and
type of the interruption and the type of customer
(GARPUR consortium 2016).

Complementary, technical indicators can be anal-
ysed, however, they cannot substitute total system
cost in an overall performance evaluation, as they
do not consider the reliability decision related trajec-
tory. These technical indicators are useful to deter-
mine how close the system is operated to its limits
if a particular reliability criterion is applied. Possible
technical performance indicators might be the prob-
ability or magnitude of violating operational security
limits or load curtailment. Operational security limits
can be defined in terms of voltages, branch flows, etc.

Performance indicators can be expressed in terms
of risk, which is defined as probability times sever-
ity, maximal, minimal or average values or probabil-
ity density functions.

3 PERFORMANCE EVALUATION
TECHNIQUES FOR SHORT TERM
RELIABILITY MANAGEMENT

A hybrid performance evaluation technique follow-
ing the analysis framework is presented. The tech-
nique combines aspects of simulation techniques and
analytical contingency enumeration and is applied to
short term reliability management. Short term relia-
bility management aims at meeting a predefined re-
liability criterion (Heylen & Van Hertem 2014). It
consists of making decisions leading to preventive,
corrective or no actions. Preventive actions are taken
ahead of real time in order to achieve security and
improve the ability to withstand possible effects of
potential contingencies (GARPUR consortium 2014).
As those actions are taken ahead of real time, deci-
sions are based on expected system states that might
differ from real time realizations due to contingencies
and forecast errors of load and renewable power gen-
eration. Credible states considered in decision making
ahead of real time are determined by the reliability
criterion that is applied.

Corrective actions are taken in a final decision stage
in real time using realizations of load, renewable gen-
eration and contingencies, while taking into account
decisions taken in the preventive stage. Corrective ac-
tions allow to keep the system within limits and to
satisfy the applied reliability criterion. The process of
short term reliability management is graphically sum-
marized in figure 2. The hybrid technique is compared
with an analytical state enumeration approach in sec-
tion 4.

3.1 Hybrid performance evaluation technique
The hybrid technique for performance evaluation
used in this paper is a simulation technique us-
ing Latin Hypercube Sampling (LHS) for load and

Credible system states

Reliability criterionPreventive reliability

management

Corrective reliability

management

Operational requirements

Operational requirements
Real time system state

Control actions

Final system state

Reliability criterion

Control actions

Figure 2: Overview of short term reliability management

RES uncertainty combined with analytical contin-
gency enumeration. LHS allows to use less data points
in a sample compared to random sampling and ap-
pears to be a good method to use for selecting val-
ues of input variables (McKay, Beckman, & Conover
1979). The methodology is graphically illustrated for
a 2-dimensional example in figure 3. LHS requires
that variables are independent (Stein 1987). Princi-
pal component analysis (PCA) is used to determine
independent components approximating the multi-
dimensional, correlated probability structure. These
independent and orthogonal components follow nor-
mal distributions of which the variances are given by
eigenvalues λi of the covariance matrix, as shown in
figure 3(a). Sampling can be done along each princi-
pal component (PC) by dividing the probability axis
of each dimension in multiple, equal intervals, as il-
lustrated by figures 3(b), 3(c) and 3(d). A data point
needs to be determined in each interval, within which
a uniform distribution is assumed. This process is
repeated for all considered independent dimensions
leading to N multi-dimensional data points in terms of
probabilities, which are transformed to principal com-
ponent values using the cumulative probability den-
sity function. The resulting states are expressed in the
coordinate system determined by the principal com-
ponents, as shown by the blue crosses in figure 3(e).
A matrix transformation using the considered princi-
pal components transforms the states to the original
state space. This results in the states indicated by the
black diamonds in figure 3(f). All states have equal
probability of occurring, as sampling is based on the
probability distributions.

Next to uncertainty regarding load and RES power
generation, contingencies need to be considered. Con-
tingencies are taken into account in an analytical way
by evaluating all contingency cases up to a cumula-
tive probability of 99.99% for all states determined
by load and RES power generation in the sample.

Based on the results of evaluated states of load and
RES power realizations, the hybrid technique allows
to obtain the probability distribution of the weighted
sum over the most probable contingencies up to a cu-
mulative probability of 99.99% of total system cost.
These sample results can be analysed statistically, e.g.
using significance tests, confidence intervals, etc.
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(a) PCA analysis of uncertainty
cloud defined by correlation ma-
trix and standard deviations of
the variables resulting in 2 inde-
pendent normal distributions
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(b) Illustration of the procedure
of Latin hypercube sampling along
the probability axis of two princi-
pal components
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(c) Sampling of first principal
component along its cumula-
tive probability axis and trans-
formation to principal compo-
nent coordinates using cumula-
tive probability density function
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(d) Sampling of second princi-
pal component along its cumu-
lative probability axis and trans-
formation to principal compo-
nent coordinates using cumula-
tive probability density function
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(e) Generated data points in prin-
cipal component coordinates
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(f) Generated data points after
transformation to original state
space

Figure 3: Procedure of Latin hypercube sampling combined with principal component analysis illustrated for a two dimensional
uncertainty cloud. lhs refers to the Latin hypercube sample, while LHS refers to the Latin hypercube sampling procedure. The shapes
of the probability density functions indicated in figures 3(a) and 3(e) can be compared, but the values corresponding to the height of
the probability density function cannot be read on the graph.
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3.2 Analytical state enumeration
Analytical state enumeration should in theory assess
each reachable system state. This is not doable in
practice. The state space is reduced by discretizing the
uncertainty cloud and selecting a reduced set of con-
tingencies. Similarly to the hybrid technique, princi-
pal component analysis is used to determine indepen-
dent components representing the uncertainty cloud
of load and RES power generation. In this manner, the
N-dimensional uncertainty cloud can be represented
by N independent normal distributions, leading to a
multi-variate normal distribution. This multi-variate
distribution can be divided in intervals with a partic-
ular probability along each principal component. The
system state in the middle of each interval is selected
to be evaluated and to represent the interval and is
transformed to the original state space using the con-
sidered principal components.

Contingencies are treated similarly to the hybrid
technique, namely, simulating the most probable con-
tingencies up to a cumulative probability of 99.99%
per state determined by load and RES power genera-
tion.

States evaluated in the analytical approach all occur
with a particular probability and are simulated only
once. Expected indicator values are determined by
making a probability weighted sum of the outcomes
for all data points using the statistical data defining
each state, i.e. probability, duration, frequency, etc.
(Allan & Billinton 2000).

3.3 Dimension reduction
The number of dimensions along which system states
need to be selected can be reduced based on the re-
sults of the principal component analysis. The crite-
rion used for dimension reduction is that the value of
the variance according to a selected principal compo-
nent needs to be larger than 1 (Jolliffe 2002).

3.4 Performance indicator
Total system cost is used as performance indicator.
Total system cost for contingency c and real time re-
alization of load and RES k given forecast s can be
calculated as:

TCc,k|s = Cprev,s +Ccorr,c,k|s +
L∑

j=1

Ccurt,j,c,k|s (1)

with Cprev,s the cost of preventive actions for fore-
cast state s of load and RES, Ccorr,c,k|s the cost of cor-
rective actions in contingency c and real time state
k of load and RES given forecast s and Ccurt,j,c,k|s
the cost of load curtailment at load point j in contin-
gency c and real time state k given forecast s. Both
the reliability decision related trajectory (Cprev,s and
Ccorr,c,k|s) and consequences in the final system state
(Ccurt,j,c,k|s) are considered by this performance indi-
cator.

4 ILLUSTRATION AND COMPARISON OF
EVALUATION TECHNIQUES

Outcomes of the hybrid technique and analytical state
enumeration approach presented in previous section
are compared quantitatively. Moreover, a qualitative
comparison of performance evaluation techniques de-
notes differences in handling different aspects of per-
formance evaluation.

4.1 Case study
The methodology is applied to a 5 node test system
based on the Roy Billinton Reliability test system
(RBTS) (Billinton, Kumar, Chowdhury, Chu, Deb-
nath, Goel, Khan, Kos, Nourbakhsh, & Oteng-Adjei
1989) as shown in figure 4. Table 1 summarizes the
generation capacity, marginal cost (MC) and type of
generation at different nodes in the system, as well as
the average share of load at each node.

1 2

3 4

5

Figure 4: The five node test system based on the RBTS system

Table 1: Overview of generators and average spatial load distri-
bution in the test system

Node Generation
capacity
[MW]

Type1 MC 2

[e/MWh]
Node Average

load
share [%]

1 40 Conv. 79 1 0
1 40 Conv. 77 2 12.12
1 50 Wind 0.02 3 51.52
2 40 Conv. 90 4 24.24
2 20 Conv. 76 5 12.12
2 100 Wind 0.01
2 5 Conv. 99
2 5 Conv. 78
1 Conv. refers to conventional generation such as nuclear, gas

fired or coal fired power plants, which are less variable and
uncertain in nature than wind generators.

2 MC = Marginal cost of generation
Upward redispatch cost = MC · 1.5 + 5
Downward redispatch cost = MC · 0.5 + 5
(Heylen, Deconinck, & Van Hertem 2015)

Load and wind power uncertainty are considered to
be correlated. The correlation matrix that is used is:

wind1 wind2 load2 load3 load4 load5

Corr =




1 0.95 0.047 0.064 0.03 0.025
0.95 1 0.07 0.04 0.03 0.01
0.047 0.07 1 0.2 0.35 0.15
0.064 0.04 0.2 1 0.22 0.3
0.03 0.03 0.35 0.22 1 0.3
0.025 0.01 0.15 0.3 0.3 1
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Three uncertainty levels are evaluated as summa-
rized in table 2. Uncertainty is defined based on the
generalized variance (GV) of the covariance matrix
relating uncertain load and wind power generation.
Generalized variance is defined as the determinant
of the covariance matrix and is proportional to the
multi-dimensional volume of the ellipsoid approxi-
mating the uncertainty cloud (Templin 2005). The un-
certainty level U is defined as n

√
GV , which corre-

sponds to the length of the side of a multi-dimensional
cube of which the volume equals the generalized vari-
ance.
Table 2: Overview of the uncertainty levels in the different cases

U1 [MW] U2 [MW] U3 [MW]

2.7 3.9 5.6

Short term reliability management is simulated ac-
cording to two reliability criteria:

• N-1 criterion: Load and wind power forecasts are
used as expected real time load and wind power
generation with a probability of 1. Contingen-
cies up to single branch outages are considered
with equal probability. Load curtailment and op-
erational limit violations need to be avoided in
those contingency cases.

• Probabilistic reliability criterion: The objective
is to minimize expected total system cost. Load
uncertainty is taken into account in probabilistic
reliability management ahead of real time using
7 load scenarios. These load scenarios are de-
rived from a discretized normal distribution on
top of the load forecast with a standard devi-
ation of 4%. The most probable contingencies
up to a cumulative probability of 99% are con-
sidered. All system states are taken into account
with their respective probability of occurrence.

Short term reliability management in the preventive
and corrective stage is simulated using a stochastic
DC security constrained optimal power flow (Heylen,
Labeeuw, Deconinck, & Van Hertem 2016, Zimmer-
man, Murillo-Sánchez, & Thomas 2011). Generation
redispatch is considered as preventive and corrective
action. 20% of total system load is available for de-
mand side response at a cost, while the remaining load
can only be curtailed in emergency cases. The system
is evaluated for a snapshot with a total load forecast
of 165 MW and a wind power generation forecast of
90 MW.

4.2 Illustration
Table 3 gives expected total system cost for various
degrees of uncertainty according to the hybrid and an-
alytical technique. The upper part of table 3 gives the
results according to the N-1 criterion, while the lower
part focuses on the probabilistic reliability criterion.
Expected total system costs according to the proba-
bilistic and N-1 criterion are expressed relatively to

Table 3: Comparison of expected total system cost (ETC) for
reliability management according to the N-1 and probabilistic
(Prob.) reliability criterion calculated with the hybrid (LHS) and
analytical (ASE) technique for three uncertainty levels U as de-
fined in table 2. ETC is expressed relatively to the highest value
obtained in the simulations, i.e. reliability management accord-
ing to the N-1 criterion evaluated using analytical state enumer-
ation.

U1 U2 U3

LHS ASE LHS ASE LHS ASE

N-1 ETC [%] 92.7 92.2 95.3 95.0 99.3 100
∆tech [%] -0.54 -0.34 0.66

Prob. ETC [%] 91.8 91.3 94.6 94.2 97.7 97.7
∆tech [%] -0.53 -0.41 0.02

ASE: Analytical State Enumeration

the highest value obtained in the simulations, i.e. re-
liability management according to the N-1 criterion
evaluated using the analytical technique with uncer-
tainty level U3.

∆tech gives relative differences in expected total
system cost (ETC) resulting from the hybrid (LHS)
and the analytical state enumeration (ASE) technique
at each uncertainty level and is defined as:

∆tech = 100 · (ETCASE −ETCLHS)

ETCLHS

(2)

Differences in expected total system cost between
both techniques are smaller than 1% for the consid-
ered uncertainty levels. The probabilistic reliability
criterion outperforms the N-1 criterion at the three un-
certainty levels for both techniques.

4.3 Comparison of performance evaluation
techniques

Bias of the evaluation techniques against particular
reliability criteria needs to be avoided. Techniques
might be biased if the credible system states pre-
scribed by a particular reliability criterion and taken
into account in the optimization of the preventive
decision stage would match the evaluated system
states. Evaluated contingency cases are selected in the
same way in both techniques, namely the most prob-
able contingencies up to a cumulative probability of
99.99%. In this manner, additional contingencies are
considered compared to the N-1 and probabilistic cri-
teria. More and different load and RES power real-
izations are also evaluated. The probabilistic criterion
only assumes a normally distributed forecast error of
total system load, while the N-1 criterion only takes
into account the forecast value. In both performance
evaluation techniques, variability of load and wind
power generation at individual nodes is considered in
the selection of system states to evaluate, as well as
the correlation between those variables. The hybrid
technique uses LHS of the uncertainty cloud, which
results in random data points that are not related to the
credible system states specified by the reliability cri-
teria. The analytical technique divides the uncertainty
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cloud in intervals by applying PCA. The resulting in-
tervals, of which the centre point is evaluated, are also
not related to the credible system states specified by
the reliability criteria. Sensitivity of the results to the
selected evaluation states should be investigated lead-
ing to an efficient state selection technique.

Computation time is different for both techniques
due to the number of system states that needs to be as-
sessed. In the hybrid technique, a fixed number of 500
states is considered in the analysis for which the con-
vergence in terms of total system cost is verified for
the considered test case. However, in larger systems,
the number of states might increase due to larger vari-
abilities that might arise. The number of system states
to evaluate in the analytical approach on the other
hand is directly linked to the volume and shape of
the uncertainty cloud, as this will determine the pos-
sibility for dimension reduction and the number of in-
tervals. Moreover, computation time will increase in
larger systems due to the increasing number of credi-
ble system states to consider in the simulation of reli-
ability management.

In the presented illustration, only snapshots are as-
sessed and temporal correlation between time steps
is not considered. If these temporal aspects need to
be included, sequential samples should be generated
that take each interval in chronological order (Allan &
Billinton 2000). Sequential samples can be based on
historical load and RES power profiles and allow to
take into account constraints between time steps in the
simulation, which increases the computational com-
plexity. In order to obtain an efficient performance
evaluation, a balance between increasing complexity
of the simulations and accuracy is sought for.

5 CONCLUSION AND FUTURE WORK
Evaluating performance of power system reliability
criteria is crucial to give incentives to power sys-
tem stakeholders to apply cost effective and up-to-
date power system reliability management. Similar-
ities exist between performance evaluation of power
system reliability management and reliability assess-
ment. However, reliability assessment mainly focuses
on final system states, while performance evaluation
should assess both the reliability decision related tra-
jectory and consequences in final system states for an
unbiased set of selected system states.

A key factor in the development or selection of
an appropriate performance evaluation technique is
the type of output information that is required, i.e.
expected values or distributions. This is determined
by the fundamental approach on which the evalua-
tion technique is based, i.e. simulation, analytical or
a combination of both (hybrid). A small case study
for three uncertainty levels and short term reliability
management according to two reliability criteria illus-
trates that a hybrid technique leads to similar results
in terms of expected total system cost compared to an
analytical state enumeration approach. Further work

should focus on finding the optimal balance between
computational complexity and accuracy.
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